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Abstract 
In any software system development, the most 

important strategic decisions are, by definition, those 

made early in the lifecycle.  However, these early lifecycle 

decisions are generally made in a data-starved 
environment.  The best sources of data are those based on 

historical information (if the current project is sufficiently 

similar to past systems), and the judgments of domain 

experts. 

At NASA, we have been developing and applying a 
risk-based model to capture information from domain 

experts and to study and plan for systems that use 

advanced technology.    

Here we describe the “Defect Detection and 

Prevention” (DDP) model and software tool.  This model 

and the custom built tool that implements it initially arose 
from needs in the hardware domain.  However, current 

spacecraft systems are a complex combination of 

hardware and software.  In this paper, we describe some 

initial work investigating the applicability of this model 

and tool to software components. 

 

1. Introduction 

Strategic decision-making for software development of 
necessity occurs early in the project lifecycle when data is 
scarce.  However, these strategic decisions are the most 
critical ones in the entire development process since they 
constrain the set of possible future, more detailed, 
decisions that can be taken.  Two common approaches to 
finding data on which to base such early decisions is to 
use historical data from similar projects, and to based 
decisions on the judgments of domain experts.  In NASA 
applications to spacecraft and related advanced 
technology, there are often novel aspects to the missions 
that require a combination of both historical data and 
expert judgment of engineers.  Fortunately, NASA is 
blessed with a large number of world-class engineers.  In 
this paper we focus primarily on utilizing their expert 
judgment. 

The “Defect Detection and Prevention” (DDP) model 
and software tool have been developed and are currently 
being used at the Jet Propulsion Laboratory (JPL) to 
capture early lifecycle decisions from engineering experts 
which is then used to create plans to meet project cost, 
schedule, and quality goals.  The model that underlies 
DDP is a risk-based one.  The model’s elements are 
described in section 2 and its calculations in section 3.  
(These descriptions are adapted from that of [3].)  The 
DDP process [6] is the subject of section 4. DDP initially 
was designed to meet a need for strategic planning of 
hardware components of systems.  This is still its primary 
use at JPL.  However, current spacecraft are a complex 
combination of hardware and software systems that work 
together to accomplish mission goals.  In section 5 we 
present a proof-of-concept exercise that illustrates how 
DDP might be applied to software. 

2. DDP Risk Model 

The simple quantitative model at the heart of DDP 
involves just three key concepts: “Requirements” (what it 
is that the system or technology is to achieve), “Risks” 
(what could occur to impede the attainment of the 
Requirements), and “Mitigations” (what could be done to 
reduce the likelihood and/or impact of Risks).  
Requirements are related to Risks, and Risks are in turn 
related to Mitigations. Specifically, Requirements are 
quantitatively related to Risks to indicate how much each 
Risk, should it occur, impacts each Requirement. Risks 
are quantitatively related to Mitigations, to indicate how 
much of a Risk-reducing effect a Mitigation, should it be 
applied, has on reducing each Risk.  

The subsections that follow give the details of 
DDP’s key concepts: Requirements, Risks and 
Mitigations, and the Impact and Effect relationships 
between them. 

2.1 Requirements 
Requirements are whatever the system under 

scrutiny is to achieve, and the constraints under which it 
must operate. They can be “product” requirements on the 
system (e.g., functional behavior, run-time resource 
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needs, timing requirements), and/or “process” 
requirements (on the development process itself, e.g., 
development environment, testing facilities, progress 
reporting requirements). Each requirement is assigned a 
weight, representing its relative importance to mission 
success, etc. 

2.2 Risks 
Risks are all the things that, should they occur, will 

lead to loss of Requirements. Each Risk is assigned an a-

priori likelihood (the chance of the Risk occurring, if 
nothing is done to inhibit it). Each Risk is also assigned a 
repair cost, what it would cost to remove an instance of 
that Risk from the system. The DDP model allows for a 
distinction to be made among various time phases; in that 
case, the repair cost may be different for each of those 
possible time phases.  

2.3 Mitigations 
Mitigations are all the activities that could be done 

to reduce the likelihood of Risks and/or reduce their 
impact on Requirements. These include preventative 

measures (e.g., training, standards, selection of high 
quality parts), detections that discover instances of Risks 
through analysis or test (e.g., code walkthroughs) so that 
those detected Risks can be corrected prior to release/use, 
and alleviations that reduce the severity of Risks (e.g., 
defensive programming that checks its inputs to ensure 
they are within specified bounds). We henceforth refer to 
these different kinds of mitigations as “prevention”, 
“detection” and “alleviation” mitigations. 

Each mitigation is assigned a cost, the cost of 
performing it. Cost may be a measure of budget, schedule, 
physical attributes (e.g., weight and electrical power are 
predominant concerns for spacecraft), scarce resources 
(e.g., skilled personnel, high fidelity testbeds), or indeed a 
mixture of these measurements. Each mitigation is also 
assigned the time period within the development effort at 
which it would be performed (e.g., requirements phase, 
design phase). 

It is possible that a mitigation can induce a Risk. For 

example, inserting error detection code can change the 
run-time behavior of a system, and thus increase the risk 
of timing errors. 

2.4 Impacts 
For each Requirement x Risk pair, the “impact” is 

the proportion of the Requirement that would be lost if the 
Risk were to occur. It is expressed as a number in the 
range 0 – 1, where 0 means no impact whatsoever, and 1 
means total loss of the Requirements. Note that a Risk 
may impact multiple Requirements and do so to differing 
extents. Likewise, multiple Risks may impact a 
Requirement, again to differing extents. 

Impacts combine additively, e.g., if two different 
Risks impact the same Requirement, then their combined 
impact on that Requirement is calculated as the sum of 
their individual impacts. 

One seemingly strange consequence of our 
combination rule for impacts is that a Requirement can be 
more than completely impacted! For example, impacts of 
0.8 and 0.7 on the same requirement add up to a total 
impact of 1.5. This is in fact a useful measure, of the 
amount of risk to be overcome in order to attain the 
requirement. However, when assessing how much of the 
Requirements have actually been attained, Requirements 
that are more than completely impacted contribute zero 
(not a negative amount, note). 

The usual notion of risk is a triple – its identity, 
likelihood and consequence. Identity and likelihood are 
provided in the definition of the risk, while consequence 
is derived as the sum total impacts the risk has on 
objectives. 

 

2.5 Effects 
For each Mitigation x Risk pair, the Effect is the 

proportion by which that Risk would be reduced if that 
mitigation were applied. It is expressed as a number in the 
range 0 – 1, where 0 means no reduction whatsoever, and 
1 means total elimination of the Risk. 

Effects combine “multiplicatively”: when several 

Fig. 1. DDP PACTs act like “filters” in series
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mitigations reduce the same Risk, their combined effect is 
computed as: (1 – the product, for each Mitigation M, of 
(1 – M’s effect)). 

Intuitively, mitigations act as “filters” arranged in 
series, such that each mitigation filters out its effect’s 
proportion of the Risks that enter it. See Figure 1 for an 
example in which a mitigation with an effect of 0.8 on 
some Risk and another mitigation with an effect of 0.3 on 
that same Risk are each applied. 

Note that the order in which these mitigations are 
applied does not matter. 

As was the case for impacts, a mitigation may affect 
multiple Risks and do so to different extents, and a Risk 
may be “affected” by multiple mitigations, again to 
different extents. 

Mitigations that induce Risks are taken into account 
by having them increase the likelihood of those Risks. 
Again, the degree of this influence is expressed as a 
number in the range 0 – 1. For a Risk with likelihood L, 
and mitigation with inducing effect of E, the new 
likelihood is calculated as (1 – (1-L)*(1-E)). Intuitively, if 
the Risk was going to occur anyway or it is induced by 
the mitigation (or both), then it will occur.  Since the 
likelihood of (P1 or P2) = (1 – (Likelihood of P1) * (1 – 
Likelihood of P2)), we get the formula above. Thus, at the 
extremes for the mitigation’s inducing effect E, 0 means 
no increase, and 1 means increase to certainty. 

For example, if L=0.4 and E=0.7, this calculation is: 
(1 – (1-0.4)*(1-0.7)) = (1 – 0.6*0.3) = 0.82. 

Note the order in which Risk reducing mitigations 
interleave with Risks inducing mitigations does matter. 
For example, consider a “perfect” mitigation (one that 
reduces a Risk’s likelihood to 0) and a Risk inducing 
mitigation. If the perfect mitigation follows the inducing 
one, the Risk will be eliminated, while the other way 
around, the inducing mitigation will cause the Risk to 
occur after the point at which the perfect has had a chance 
to apply. In practice, we assign mitigations to distinct 
time phases, and organize the calculations so that for 
mitigations of a given phase, all the likelihood-reducing 
effects are calculated first (the relative order of which 
does not matter), and all the likelihood-increasing effects 
are calculated second (again, the relative order of which 
does not matter). This means that the Risks induced 
within a time phase can be reduced only by mitigations of 
later time phases. 

It has been suggested that, when possible, the 
ordering of mitigations could be deliberately chosen to 
optimize their net effect. For example, given two 
mitigations that could be applied in either order, chose the 
ordering that puts first the mitigation that induces Risks. 
This would be an interesting extension to the current DDP 
implementation. 

3. DDP Calculations 

In a DDP model, a set of Mitigations achieves 
benefits (Requirements are met because the Risks that 
impact them are reduced by the selected Mitigations), but 
incurs costs (the sum total cost of performing those 
Mitigations). 

The measure of benefit of a DDP model is 
calculated as the sum of the weighted requirements’ 
attainment. The measure of cost of a DDP model is 
calculated as the sum of the costs of the Mitigations 
selected for application, plus the sum of the costs of 
repairs of the Risks that detection mitigations discover. 
Both of these measures take into account the detrimental 
impact of Risks on Requirements, moderated by the effect 
of Mitigations at reducing Risks’ likelihoods and/or 
severities. 

The essential aspects are the calculation of Risks’ 
likelihoods and severities (in the course of which costs of 
mitigations and repairs are accumulated), followed by the 
calculation of Requirements’ attainment. These are 
described next. 

 

3.1 Risk Likelihoods and Severities 
The calculation of each Risk’s likelihood starts from 

its a-priori likelihood value. At each time phase, the 
effects on it of that phase’s prevention and reduction 
mitigations reduce its likelihood. As discussed earlier, a 
Mitigation acts as a “filter” to remove some proportion of 
the Risk. In the course of this calculation, the reduction in 
likelihood attributable to detection mitigations incurs a 
repair cost. This is the repair cost attributed to the Risk at 
that phase, multiplied by the proportion by which the 
Mitigation reduces the Risk’s likelihood. 

EXAMPLE: consider a Risk (e.g., a requirements 
flaw) that costs $100 to repair at requirements formulation 
time. Suppose a Mitigation (e.g., requirements inspection) 
has an effectiveness of 0.7 against that Risk. If the Risk’s 
likelihood prior to application of the mitigation is 0.9, 
then after it will be 0.9 * (1 – 0.7) = 0.27. The reduction 
in likelihood is 0.9 – 0.27 = 0.63, and so the repair cost is 
$100 * 0.63 = $63. An equivalent and more direct 
calculation of this is to simply multiply the Risk’s unit 
repair cost ($100) by its likelihood prior to mitigation 
(0.9) by the mitigation’s effect on that Risk (0.7): $100 * 
0.9 * 0.7 = $63. 

The mitigations of a time phase that induce Risks 
are taken into account after all the mitigations of that 
phase that reduce Risks. Their contribution is calculated 
using the combination rule discussed in the Effect 
subsection earlier. 

The severity reductions attributable to alleviation 
mitigations are also calculated phase by phase, using the 
same kind of calculation as prevention mitigations, but 
decreasing Risk severities rather then likelihoods. 
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3.2 Requirements Attainment 
The ideal requirements attainment is simply the sum 

of the weights of all the requirements. This ideal would 
only be achieved if all the Risks were completely 
mitigated, by reducing their likelihoods and/or severities 
to zero. 

The actual attainment of a requirement, taking into 
account Risks and mitigations, is its weight * (1 – the 
proportion to which it is at risk, capped at 1). The 
proportion to which it is at risk is the sum over all Risks 
of each Risk’s (likelihood * severity * impact on that 
Requirement). As mentioned earlier, this sum can exceed 
1, hence the need to cap it at 1 in this calculation. The 
Risks’ likelihoods and severities are calculated as 
described in the previous subsection. 

EXAMPLE: consider a requirement with weight 100 
that is at risk due to two Risks. Suppose that after taking 
mitigations into account, the first Risk has likelihood 0.9, 
severity 0.5 and impact 0.5, and the second has likelihood 
0.4, severity 1.0 and impact 0.3. This requirement’s 
attainment is thus (100 * (1 - ((0.9 * 0.5 * 0.5) + (0.4 * 
1.0 * 0.3)))) = (100 * (1 - (0.225 + 0.12))) = (100 * (1 - 
0.345)) = 65.5. 

3.3 Ontology Complexity 
The DDP modeling language is fairly simple – 

consisting of three first class entities (Requirements, 
Risks, and Mitigations) and relationships between 
requirements and risks, and between risks and 
mitigations.  There are surely situations where this fairly 
simple ontology is not adequate to model complex 
relationships. However, for the early design of complex 
technology in which it is currently being used at JPL this 
simple ontology is an advantage.  First, this allows us to 
extract a reasonably robust and accurate model from a 
group of very intelligent, but extremely busy engineers in 
a few (three or four), relatively short (half day) meetings.  
Since this model is used early in the design process, it can 
point engineers (in a fairly rudimentary way) to where 
problems are likely to occur.  Then a more complex and 
complete model can be used to analyze these problem 
areas more thoroughly.  

4. DDP Process 

The success of a DDP application is crucially 
dependent on the involvement of experts. Their combined 
expertise must encompass: 

Requirements: 

• Driving needs/goals/objectives (e.g., in our 
setting, the science mission objectives driving 
the need for an instrument’s capabilities). 

• Environmental constraints on resources available 
to the system (e.g., RAM, power). 

• Environmental constraints on the extent to which 
the system can impact its environment (e.g., 
electromagnetic fields). 

Risks: 

• Development problems (inability to construct, 
test, repair, operate and maintain the system) 

• The multitude of ways the operating system can 
fail to meet requirements. 

Mitigations: 

• Preventative measures that can be employed to 
reduce the likelihood of problems arising in the 
first place (e.g., coding standards, training, use of 
qualified parts) 

• Detections that can be employed to uncover the 
presence of problems prior to fielding and use of 
the system (e.g., inspections, reviews, analyses, 
tests). 

• Alleviations that can be employed to reduce the 
severity of Risks (e.g., array bounds checking 
coupled with appropriate responses). 

Typical DDP applications have involved 5 – 15 experts 
drawn from the disciplines of mission-science, project 
planning, software and hardware engineering, quality 
assurance, testing, risk management, etc. 

DDP’s particular strength is that it can combine inputs 
from this wide variety of disciplines. It uses its relatively 
simple risk-based quantitative model to do so. Certainly 
this model is incapable of capturing all the nuances of a 
complex design. However, for early decision making, it is 
more important to be able to make key choices, those that, 
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Figure 2:  DDP Process [6] 
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if done correctly, will lead to significantly superior 
designs. By seeking to be all encompassing of the relevant 
areas of expertise, DDP is able to avoid pitfalls of too 
narrow a focus on just the areas that are understood in 
depth. The simplicity of the quantitative risk model means 
that all areas can formulate their concerns to at least a 
coarse level of fidelity, which is often all that is needed to 
make key decisions. 

There is a straightforward stepwise process to building 
and using a DDP model. The steps are illustrated in figure 
2.  It has been typical to require at least 4 sessions of 3 to 
4 hours each to gather the DDP information for a non-
trivial technology. A facilitator is needed to direct these 
sessions. This must be someone who both understands the 
DDP process, and has a feel for the broad range of 
concerns that the study must deal with. The facilitator 
guides the elicitation and decision making steps. The 
DDP tool is run throughout the sessions, its screen 
projected and visible to all the participants. As 
information is gathered, it is entered into the tool in real 
time. Someone conversant with the DDP tool controls the 
tool, does data entry, switches between the various visual 
presentations, etc. In some studies, the same individual 
has acted as both facilitator and tool controller; in others, 
separate individuals have filled these two roles. 

The DDP process has been applied to spacecraft 
hardware, software and systems (including both hardware 
and software). Engineers from the hardware field are used 
to thinking about risks of various technologies.  These 
fields have much published data about component 
reliability.  In the software field, less is known (or 
published) about typical software risks.  To help in this 
area, we have preloaded a set of software risks into a DDP 
database.  This is a taxonomy of software risks from the 
Software Engineering Institute. [1] With this initial 
seeding, the engineers and domain experts do not have to 
begin with a “blank slate.”  (They are, of course, not 
limited to these software risks.  They can down-select 
from this set to just those that they deem applicable, and 
can add others easily.) 

Custom software [2, 4] has been developed to support 
the DDP process. This software is used to: 

• Capture on-the-fly the stakeholders’ expressions 
of knowledge, and help organize this 
accumulation of knowledge. 

• Perform calculations over the assembled 
information. 

• Present back the information using a variety of 
cogent visualizations. 

• Support the stakeholders in performing risk-
informed decision making. 

Examples of the DDP software’s features are to be 
found in the next section. 

5. Proof-of-concept software application 

DDP has been used primarily on hardware components 

of systems, most often to study their advancement from a 
working prototype to engineering model.  In this paper we 
present a proof-of-concept of how DDP could also be 
applied to strategic decision making during software 
development activities.  It is our assertion that strategies 
for software development are analogous those for 

hardware system development. That is, we believe that 
the DDP model based on requirements, risks, and 
mitigations can be effective in strategic decision-making 
for software systems also. 

Our case study for this assertion is a fault protection 
subsystem (in order to conceal proprietary information we 
present only some of its information). First, we cast the 
system requirements as DDP requirements. A portion of 
the resulting tree structure is seen in Figure 3 above. 

The risk tree is similar: a portion is seen in Figure 4. 
 
Requirements, risks and mitigations are linked through 

two matrices.  The first of these matrices correlates risks 
and requirements. (See Figure 5.)  Engineers and domain 
experts are asked to estimate the impact that each risk, 
should it occur, would have on each requirement.  
Impacts are expressed as numbers in the range 0 to 1.  An 
estimate of 1 means that this risk is so serious that, if it 
occurs, that requirement would be completely lost.  A 
value of 0 implies that this risk will not effect this 

Figure 3. A portion of the requirements tree 

Figure 4. A portion of the risks tree
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requirement at all.  A value of ρ (0 < ρ < 1) means that 

the experts expect that risk to cause the proportion ρ of 
that requirement to be lost. It is also possible to provide a 
non-numeric value, which will be ignored in the 
calculations performed by the DDP tool, but which has 
utility as a placeholder (e.g., a “TBD” value which 
someone will be responsible for looking up). For the 
purpose of our proof-of-concept demonstration, we 
populated this matrix with our own estimates. If this were 
a real study, we would follow the usual process and 
convene a group of experts who together would provide 
and vet such information. 

 

In this study we have so far worked with only a subset 
of the wide range of activities applicable to the reduction 

of software risk. Figure 6 shows (most of) our tree 
structure of such activities: 

The second matrix (not shown here) correlates risk and 
mitigations.  That is, for each mitigation-risk pair, domain 
experts are asked to estimate the ability of that mitigation 
to alleviate, detect or prevent that risk.  Again, these are 
numbers in the range 0 to 1, with 1 meaning that this 
mitigation completely eliminates this risk; 0 means that it 
has no effect on this risk. (For mitigations that detect 
risks, the intent is that these be applied before the 
spacecraft is launched, in time for any detected problems 
to be repaired).  

5.1 Decision Making 
Up to this point in the DDP process, the task of the 

DDP tool is to record these decisions.  After this data is 
collected, the focus of the process switches to one of 
decision-making, guided by the recorded information. The 
primary purpose of DDP has been to help guide the 
selection of which of the mitigating actions to take to 
overcome the risk and therefore to achieve the 
requirements.  Since there are typically many more 
possible mitigations than can be simultaneously afforded, 
the aim of this step is to emerge with a cost-effective 
selection from among them. Another outcome can be the 
strategic decision to modify and/or abandon some 
requirements if it becomes clear that it is not possible to 

satisfactorily achieve them all with the resources 
available.  This is called descoping [5]. 

In addition to the matrix and list views used primarily 
for input of data, DDP provides several views appropriate 
for study of various measures calculated from this data.  
One of these is a familiar bar chart view. For example, 
when showing the aggregate impact that each risk has on 
the requirements (taking in to account both the weight of 
the requirements and the strengths of the impacts), this is 
useful to indicate the “tall pole” risks worthy of further 
attention.  See Figure 7. 

 
The heights of the bars indicate the sum total impacts 

(on requirements) of each of the risks. These can be 
sorted in various ways; the most commonly used one 
being in descending order of magnitude. The small strip 
along the bottom shows a thumbnail view of the entire bar 

Figure 6. Partial tree of software risk 

mitigations 

Figure 7. Bar chart of (unmitigated) risks 

Figure 5. A portion of the Requirements (rows) x 

Risks (columns) matrix 
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chart. The black rectangle overlaying that thumbnail 
shows which portion of the entire bar chart is currently 
visible at full scale. 

The tallest bars are those risks that have the greatest 
sum total impacts on weighted requirements – these are 
the risks that one would want to focus attention on. 

As mitigations are selected, their effects reduce risks 
(by decreasing the likelihoods and/or impacts of those 
risks, depending on the kind of mitigation). The same bar 
chart is used to reveal this – see Figure 8. Green shows 
the risk levels before mitigation, red shows the risk levels 
after mitigation. 

The advantage of views such as these is that they allow 
the users to immediately and dramatically see the risk-
reducing effects of mitigations. One of the banes of 

software quality assurance is convincing developers of the 
value of the activities it recommends. The aim of this 
work is to reveal the benefits of assurance activities in 
terms of the risks they reduce. Developers can still 
exercise choice over which mitigation activities they wish 
to perform, but now their choices are informed by the risk 
implications that stem from omitting some activity. DDP 
offers further assistance in this regard by using this same 
bar chart display to show comparisons among alternate 
selections. This is shown in Figure 9, where an alternate 
selection of mitigations has been made. Black shows 
where risks have increased relative to the first selection; 
yellow shows where risks have decreased.  

Another display of risk status offered by DDP is the 
familiar 2-D risk chart, the axes of which are likelihood 
and impact. This is seen in Figure 10. The red-yellow-
green colored regions demark high, medium and low risk 

areas (because the axes of the chart are log scale, the 
diagonal boundaries between these regions are themselves 
contours of constant risk). It is a common policy to 
determine the managerial treatment of risks depending on 
which of these regions they fall within (the boundaries 
between regions being another strategic decision). For 
example, high likelihood high impact risks are brought to 
the attention of the project as a whole, are more closely 
tracked over time, etc. Other risk tools commonly use a 
rectangular matrix of risk regions for a similar purpose. 
DDP can generate these other chart forms too.  

A selection of mitigations has a benefit (the net effect 
is to reduce risks, and thereby improve the expected 
attainment of requirements), but also has a cost (the sum 
of the costs of performing the mitigations themselves, and 
for those problem-detection type mitigations, such as tests 
and analyses, the costs of correcting the defects they 
discover). DDP automatically computes both the benefit 
and cost of the currently selected mitigations. So far the 
illustrations have concentrated on showing the benefit 
side of the equation. DDP also displays a small but 
important cost meter: as mitigations are selected, the $ 
figure on the cost meter increases. In selecting 
mitigations, users must take into account both the benefits 
and the costs. Emerging with a cost-effective set of 
mitigations is one of the primary uses of DDP. 

To assist in this DDP has a built-in mechanism for 
heuristic optimization. The current distribution of DDP 
uses simulated annealing for this purpose, but we have 
also experimented successfully using genetic algorithms 
[8]. Optimization can be set to search for the selection of 
mitigations that will achieve maximum requirements 
attainment while staying at or below some cost ceiling, to 
search for the selection of mitigations that minimizes the 
cost of attaining (or improving on) some prescribed lower 
bound of requirements attainment, or to search for some 
hybrid combination of the two. The result of a search is 
the identification of (near) optimal mitigation selections. 
These selections can be scrutinized through DDP’s 
various displays just as can a manually chosen selection 

Figure 9. Comparison of alternate mitigation 

selections 

Figure 10. 2-D risk chart

Figure 8. Bar chart of mitigated risks
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of mitigations, so users can employ the heuristic search to 
reveal promising solutions, and thereafter fine-tune those 
solutions as needed (e.g., they might have reason to prefer 
one slightly inferior solution over another slightly 
superior solution, because it avoids the use of a scarce 
testing resource, say). The heuristic search can also be 
repeated at intervals across the cost spectrum to reveal the 
overall shape of the cost/benefit space. Our software 
dataset is still only partially completed with respect to its 
list of mitigations, so it is premature to utilize this 
capability just yet. As our study progresses, we look 
forward to experimenting with this. 

6. Discussion 

There are some strengths and weaknesses to the DDP 
model and how it is applied. We discuss these in 
relationship to related work on software assessment. 

6.1 Strengths  

The relative simplicity of the DDP model gives it the 
ability to span a wide range of concerns (e.g., technical 
and programmatic risks). In this respect it is reminiscent 
of, for example, the openness of the i* model [9, 10], used 
for evaluation of (among other things) software design 
alternatives.  

The information that goes into a DDP model can be a 
mixture of experts’ estimates and (where available) 
historical knowledge. 

The data that comprises the model is extensible. 
Information can be added, changed and removed on-the-
fly. For example, risks specific to the case at hand can be 
introduced, irrelevant ones removed, and pre-populated 
data adjusted (e.g., if the analysis team includes an expert 
on the use of formal methods, the cost for such analysis 
might be reduced, and its effectiveness increased). 

The data to populate a DDP model, while voluminous, 
is straightforward, and experience has shown the 
feasibility of capturing sufficient information (sufficient 
to emerge with insightful findings) with modest amounts 
of experts’ time. For our technology infusion studies, it is 
typical to require the involvement of, say, 10 experts in 4 
half-day sessions. The total amount of effort is thus on the 
order of 160 hours. When key decisions are being made 
as to whether to commit to a multi-million-dollar next 
step in the advancement of a technology, such an 
investment of time is not unreasonable. 

Overall DDP is reminiscent of QFD (Quality Function 
Deployment) method [11], widely used across a range of 
industries and application areas. DDP has a more 
quantitative, risk-centric perspective, with a probabilistic 
interpretation pervading its Requirements-Risks-
Mitigations model.   

6.2 Weaknesses 
The DDP model schema (notably the formulae by 

which impacts of multiple Risks on the same Requirement 
“add up”, and by which multiple Mitigations against the 

same Risk combine) is inflexible. These formulae are pre-
set, and do not necessarily apply well to all situations. 
While there are some workarounds that can be employed 
if need be (e.g., representing a combination of mitigations 
as a distinct mitigation whose effectiveness at reducing 
risks can be asserted), they are clumsy to use. Other 
researchers adopt models that can be constructed to match 
the case at hand, and thus more faithfully represent the 
software development process, e.g., the Bayesian Belief 
Net models of [12], or the simulation models of [13]. 

DDP lacks a means for validation of its models. The 
aforementioned formulae were chosen to be plausible, but 
are not based on a solid body of evidence. Likewise the 
experts’ estimates that comprise a significant portion of 
most DDP models are constructed on-the-fly, and so do 
not have an explicit pedigree to experiential data. This is 
in contrast to software estimation techniques such as 
COCOMO and, more recently, COQUALMO and iDave 
[14, 15] which are derived from data from past software 
projects, possibly tempered by a consensus process of 
experts (e.g., using Delphi techniques). Also similar is the 
stochastic model of [16] 

There is still an “art” to populating a DDP model. The 
use of pre-populated models as a starting point (e.g., a 
risk taxonomy of generic software development 
problems) is somewhat helpful, both to establish an 
overall structure, and to serve as a reminder (much like a 
checklist). However, there is need for discretion over how 
much additional information to add (what is the scope of 
the study?), and over how much detail to descend to (e.g., 
does the single Mitigation “software inspections” suffice, 
or is there need to distinguish among alternative forms of 
inspections, e.g., Fagan inspections, Perspective Based 
Reading, etc.).  The danger of staying at too narrow a 
scope and/or too high a level is lack of coverage and 
discrimination among significantly distinct cases, while 
the danger of overly broadening the scope and/or 
descending to too low a level is the increased effort it 
takes to populate the model. We address this problem by 
using a DDP-knowledgeable person to facilitate the 
meeting (in fact, we usually use two such people – one to 
serve as facilitator, the other to “drive” the DDP 
software). 

DDP’s model probabilistic model is overly simplistic 
when compared to the structures seen in use in full-
fledged Probabilistic Risk Assessment [17]. For example, 
PRA tools such as Sapphire, QRAS and Galileo have 
explicit notions of temporal dependencies (through event 
sequence diagrams or phase-dependent fault tree gates), 
and of probability distributions with which to capture and 
reason about uncertainties. Although we have recently 
incorporated logical fault trees into DDP’s Risks 
structures [18], these are but a small step toward the full 
representational power of PRA. We have explored the use 
of DDP as an agile precursor step that serves to indicate 
where a more elaborate PRA model needs to be 
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constructed [19]. In the software arena, however, it is less 
routine to apply PRA methods; instead, modest 
applications of fault trees, Software FMECAs and hazard 
analyses (and combinations of them, e.g., [20]) are the 
norm. For such applications DDP seems to be relatively 
well suited. 

In the software arena, DDP is reminiscent of the 
KAOS models of [21], specifically their treatment of 
“obstacles” (akin to DDP’s “Risks”). However, whereas 
the KAOS models emphasize a logic-structure based 
treatment (including temporal logic to capture, e.g., 
timing requirements), DDP has emphasized instead a 
quantitative treatment more immediately suited to capture 
and tradeoff reasoning over and between so-called “non-
functional requirements”. It is intriguing that in recent 
work the KAOS approach is being extended to 
incorporate quantitative reasoning [22], while, as 
mentioned above, logical fault tree constructs are being 
incorporated into DDP. It seems these alternate 
approaches are each expanding in the direction of the 
other. 

7. Conclusions 

The paper has described the DDP process, and shown 
aspects of our ongoing study of software specific 
application of our risk-informed decision making process 
and its software support, DDP.   

The DDP process and tool has proven itself useful in 
strategic planning for hardware-based technology at JPL 
over the past few years. In many of the applications, the 
DDP process has yielded insights that the experts 
involved describe as both surprising and correct – 
surprising in the sense that they would not have emerged 
with those insights until significantly later in the 
development process, by which time reacting to them 
would be more costly; and correct in the sense that when 
they trace through the DDP data underpinning the insights 
they agree upon its validity. Examples of kinds of insights 
include recognition of a risk that is more serious than 
would have been suspected (and so warrants increased 
efforts to mitigate it, or, in some cases, revision of the 
requirements), and recognition that a hitherto unfavored 
mitigation is really needed (or in some cases the reverse – 
that a regularly favored mitigation is in this instance 
unnecessary). 

We ascribe its benefit to the following factors: 

• It is typical for DDP studies to involve a non-
trivial amount of data. There are commonly 
dozens (or even hundreds) each of requirements, 
risks and mitigations, and there may well be 
thousands of non-zero impact and effect values 
connecting these. 

• The volume and interconnectedness of this data 
reflects the complexity of the challenges inherent 
in the design of complex systems. DDP aims to 
help in this design process, and so must manage 

this quantity of information in such a way as to 
allow the engineers and domain experts both to 
provide the information, and make decisions on 
the basis of that aggregated information. 

In our study so far of application of DDP to a software 
system, we find these same phenomena recurring. This 
gives us confidence that DDP will prove to be useful for 
strategic decision making in software development.  
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